Maximal Regular Right Ideal Space of a Primitive Ring. II
نویسندگان
چکیده
منابع مشابه
Primitive Ideal Space of Ultragraph $C^*$-algebras
In this paper, we describe the primitive ideal space of the $C^*$-algebra $C^*(mathcal G)$ associated to the ultragraph $mathcal{G}$. We investigate the structure of the closed ideals of the quotient ultragraph $ C^* $-algebra $C^*left(mathcal G/(H,S)right)$ which contain no nonzero set projections and then we characterize all non gauge-invariant primitive ideals. Our results generalize the ...
متن کاملMost Complex Regular Right-Ideal Languages
A right ideal is a language L over an alphabet Σ that satisfies L = LΣ∗. We show that there exists a stream (sequence) (Rn | n > 3) of regular right ideal languages, where Rn has n left quotients and is most complex under the following measures of complexity: the state complexities of the left quotients, the number of atoms (intersections of complemented and uncomplemented left quotients), the ...
متن کاملOn the maximal ideal space of extended polynomial and rational uniform algebras
Let K and X be compact plane sets such that K X. Let P(K)be the uniform closure of polynomials on K. Let R(K) be the closure of rationalfunctions K with poles o K. Dene P(X;K) and R(X;K) to be the uniformalgebras of functions in C(X) whose restriction to K belongs to P(K) and R(K),respectively. Let CZ(X;K) be the Banach algebra of functions f in C(X) suchthat fjK = 0. In this paper, we show th...
متن کاملMaximal ideal space of a commutative coefficient algebra
The basic notion of the article is a pair (A, U), whereA is a commutative C-algebra and U is a partial isometry such thatA ∋ a → UaU is an endomorphism of A and UU ∈ A. We give a description of the maximal ideal space of the smallest coefficient C-algebra E∗(A) of the algebra C(A, U) generated by the system (A, U).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1973
ISSN: 0002-9947
DOI: 10.2307/1996658